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Remember the Sorting Problem

Let 𝐴 = [𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛−1] be an array with 𝑛 unsorted elements.

Q: How many permutations of those 𝑛 elements do we have?
A: 𝑛!

Q: How many of such permutations correspond to the elements listed in sorted 
order?
A: At least 1 (remember why?)

Sorting algorithms solve the following problem: Given an unsorted array, decide 
how to permute the array elements such that they are sorted.
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Example: Consider the array [𝑎0, 𝑎1, 𝑎2]. How would a sorting algorithm decide the sorted permutation?

𝑎0 ≤ 𝑎1

𝑎1 ≤ 𝑎2

𝑎0 ≤ 𝑎2

𝑎0 ≤ 𝑎2

𝑎1 ≤ 𝑎2[𝒂𝟎, 𝒂𝟏, 𝒂𝟐]

[𝒂𝟎, 𝒂𝟐, 𝒂𝟏] [𝒂𝟐, 𝒂𝟎, 𝒂𝟏]

[𝒂𝟏, 𝒂𝟎, 𝒂𝟐]

[𝒂𝟏, 𝒂𝟐, 𝒂𝟎] [𝒂𝟐, 𝒂𝟏, 𝒂𝟎]

Yes

Yes

Yes

Yes

Yes

No

No No

No No

A binary tree has at most 2ℎ leaves, 
where ℎ is the height of the tree.

Also, the number of leaves (i.e., 
permutation of the input array) is 
𝑛! So, 

2ℎ ≥ 𝑛!
ℎ ≥ log2 𝑛!

What does it imply?
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Lower Bounds 
for Comparison-

Based Sorting

Theorem: Any comparison sort algorithm requires 
Ω 𝑛 log2 𝑛 comparisons in the worst case.

Proof: We know that ℎ ≥ log2 𝑛! from the decision tree 
model.

log2 𝑛! = log2 1 ⋅ 2 ⋅ 3 ⋅ ⋯ ⋅ 𝑛

= log2 1 + ⋯+ log2
𝑛

2
+⋯+ log2 𝑛 − 1 + log2 𝑛

≥ log2
𝑛

2
+⋯+ log2 𝑛 − 1 + log2 𝑛

= log2
𝑛

2
+ log2

𝑛

2
+ 1 +⋯+ log2 𝑛 − 1 + log2 𝑛

≥ log2
𝑛

2
+ log2

𝑛

2
+⋯+ log2

𝑛

2

=
𝑛

2
log2 𝑛

So, log2 𝑛! ∈ Ω 𝑛 log2 𝑛

Since ℎ ≥ log2 𝑛! , then ℎ ∈ Ω 𝑛 log2 𝑛

7Theorem statement from Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford. Introduction to Algorithms (The MIT Press) (p. 193).



So, no Faster Sorting?

Nope!

ℎ ≥ 𝑛 log(𝑛). So, ℎ ∈ Ω 𝑛 log 𝑛

Unless…

… we stop sorting by comparing items with 
each other.
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Done!
Do you have any questions?
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