

Note: Slides complement the discussion in class

Better than $n \log(n)$? Lower bound for comparisonbased sorting algorithms

Table of Contents

U1 Better than $n \log(n)$?

. . .

Lower bound for comparison-based sorting algorithms

4

. . .

Remember the Sorting Problem

Q: How many permutations of those *n* elements do we have? **A:** *n*!

Q: How many of such permutations correspond to the elements listed in sorted order?A: At least 1(remember why?)

Sorting algorithms solve the following problem: *Given an unsorted array, decide how to permute the array elements such that they are sorted.*

 $a_0 \leq a_1$ Yes No $a_1 \leq a_2$ $a_0 \leq a_2$ n! So, Yes No Yes No $[a_0, a_1, a_2]$ $a_0 \leq a_2$ $[a_1, a_0, a_2]$ $a_1 \leq a_2$ Yes No Yes No

 $[a_2, a_0, a_1]$

 $[a_0, a_2, a_1]$

Example: Consider the array $[a_0, a_1, a_2]$. How would a sorting algorithm decide the sorted permutation?

 $[a_1, a_2, a_0]$

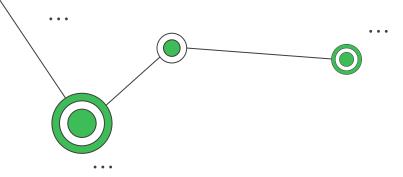
A binary tree has at most 2^h leaves, where *h* is the height of the tree.

Also, the number of leaves (i.e., permutation of the input array) is

> $2^{h} > n!$ $h \ge \log_2(n!)$

What does it imply?

 $[a_2, a_1, a_0]$



. . .

Lower Bounds for Comparison-Based Sorting

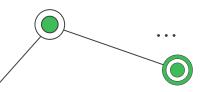
Theorem: Any comparison sort algorithm requires $\Omega(n \log_2(n))$ comparisons in the worst case.

Proof: We know that $h \ge \log_2(n!)$ from the decision tree model.

$$\begin{split} \log_2(n!) &= \log_2(1 \cdot 2 \cdot 3 \cdot \dots \cdot n) \\ &= \log_2(1) + \dots + \log_2\left(\frac{n}{2}\right) + \dots + \log_2(n-1) + \log_2(n) \\ &\ge \log_2\left(\frac{n}{2}\right) + \dots + \log_2(n-1) + \log_2(n) \\ &= \log_2\left(\frac{n}{2}\right) + \log_2\left(\frac{n}{2} + 1\right) + \dots + \log_2(n-1) + \log_2(n) \\ &\ge \log_2\left(\frac{n}{2}\right) + \log_2\left(\frac{n}{2}\right) + \dots + \log_2\left(\frac{n}{2}\right) \\ &= \frac{n}{2}\log_2(n) \end{split}$$

So, $\log_2(n!) \in \Omega(n \log_2(n))$

Since $h \ge \log_2(n!)$, then $h \in \Omega(n \log_2(n))$



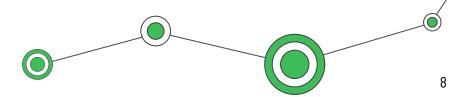
So, no Faster Sorting?

Nope!

 $h \ge n \log(n)$. So, $h \in \Omega(n \log(n))$

Unless...

... we stop sorting by comparing items with each other.



. . .

Done!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories

