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Remember the Sorting Problem

Let A = [ay, a4, ay, ..., a,,—1] be an array with n unsorted elements.

0: How many permutations of those n elements do we have?
A: n!

0: How many of such permutations correspond to the elements listed in sorted
order?
A: At least 1(remember why?)

Sorting algorithms solve the following problem: Given an unsorted array, decide
how to permute the array elements such that they are sorted.
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Example: Consider the array [ay, a4, a,]. How would a sorting algorithm decide the sorted permutation?

>

ao, aq, az

Ay < a4
No
a1, Qo, az

-

ao,az,al

az,ao, a]_

A

al, az,ao

az,al,ao

A binary tree has at most 2" leaves,
where h is the height of the tree.

Also, the number of leaves (i.e.,
permutation of the input array)is

n! So,

2" > n!
h = log,(n!)

What does it imply?
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Theorem: Any comparison sort algorithm requires
Q(nlog,(n)) comparisons in the worst case.

Proof: We know that h > log,(n!) from the decision tree
model.
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So, log,(n!) € Q(nlog,(n))

Since h = log,(n!), then h € Q(nlog,(n))

Theorem statement from Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford. Introduction to Algorithms (The MIT Press)(p. 193).



f\@ So, no Faster Sorting?

Nope!

h > nlog(n).So, h € Q(nlog(n))

Unless...

... we stop sorting by comparing items with
each other.
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Done!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by
Stories
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